gamma-Sarcoglycan deficiency increases cell contractility, apoptosis and MAPK pathway activation but does not affect adhesion.
نویسندگان
چکیده
The functions of gamma-sarcoglycan (gammaSG) in normal myotubes are largely unknown, however gammaSG is known to assemble into a key membrane complex with dystroglycan and its deficiency is one known cause of limb-girdle muscular dystrophy. Previous findings of apoptosis from gammaSG-deficient mice are extended here to cell culture where apoptosis is seen to increase more than tenfold in gammaSG-deficient myotubes compared with normal cells. The deficient myotubes also exhibit an increased contractile prestress that results in greater shortening and widening when the cells are either lightly detached or self-detached. However, micropipette-forced peeling of single myotubes revealed no significant difference in cell adhesion. Consistent with a more contractile phenotype, acto-myosin striations were more prominent in gammaSG-deficient myotubes than in normal cells. An initial phosphoscreen of more than 12 signaling proteins revealed a number of differences between normal and gammaSG(-/-) muscle, both before and after stretching. MAPK-pathway proteins displayed the largest changes in activation, although significant phosphorylation also appeared for other proteins linked to hypertension. We conclude that gammaSG normally moderates contractile prestress in skeletal muscle, and we propose a role for gammaSG in membrane-based signaling of the effects of prestress and sarcomerogenesis.
منابع مشابه
γ-Sarcoglycan Deficiency Leads to Muscle Membrane Defects and Apoptosis Independent of Dystrophin
gamma-Sarcoglycan is a transmembrane, dystrophin-associated protein expressed in skeletal and cardiac muscle. The murine gamma-sarcoglycan gene was disrupted using homologous recombination. Mice lacking gamma-sarcoglycan showed pronounced dystrophic muscle changes in early life. By 20 wk of age, these mice developed cardiomyopathy and died prematurely. The loss of gamma-sarcoglycan produced sec...
متن کاملMatrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression
The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...
متن کاملCyclooxygenase inhibitors combined with deuterium-enriched water augment cytotoxicity in A549 lung cancer cell line via activation of apoptosis and MAPK pathways
Objective(s): Combination chemotherapy is a rational strategy to increase patient response and tolerability and to decrease adverse effects and drug resistance. Recently, the use of non-steroidal anti-inflammatory drugs (NSAIDs) has been reported to be associated with reduction in occurrence of a variety of cancers including lung cancer. On the other hand, growing evidences suggest that deuteri...
متن کاملMatrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression
The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...
متن کاملThe Role of Wnt/β-catenin Signaling Pathway in Rat Primordial Germ Cells Reprogramming and Induction into Pluripotent State
Primordial Germ Cells (PGCs) are unipotent precursors of the gametes. PGCs can give rise to a type of pluripotent stem cells in vitro that are called embryonic germ (EG) cells. PGCs can also acquire such pluripotency in vivo and generate teratomas. Under specific culture conditions, PGCs can be reprogrammed to embryonic germ cells which are capable of expression of key pluripotency marker...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cell science
دوره 118 Pt 7 شماره
صفحات -
تاریخ انتشار 2005